
Study of Posit Numeric in Speech Recognition Neural Inference
Zishen Wan, Eric Mibuari, En-Yu Yang, Thierry Tambe

Harvard University
Cambridge, MA

ABSTRACT
Recurrent neural networks (RNNs) are now at the heart of many ap-
plications such as image captioning, speech recognition, language
translation and modelling. In order to achieve the best possible in-
ference accuracy, these RNN models tend be quite large and many
utilize 16 or 32-bit floating point format, which can enormously
stretch memory resources. Quantizing the model parameters in
lower bit precision would be required in order to deploy these
models to edge and mobile devices with limited memory storage.
In this report, we study the impact of various bit precisions and
formats on speech-to-text neural performance. A particular empha-
sis is given to the posit numerical format which can yield higher
accuracy than floats for a specific range of numbers. For this pur-
pose, we implemented a Python module which can convert float
numbers into posits of various bit lengths. Our speech recognition
inference results show that the posit numerical format is by far
the best solution for aggressive quantization at 8-bit. Furthermore,
we show that the area and power cost of a posit-based hardware
is smaller compared to a fixed-point-based hardware. Finally, we
designed a hardware prototype design of a processing engine for
speech-to-text inference in SystemC and successfully verified its
functionality.

Index Terms – recurrent neural networks, low bit precision, posit
format, speech recognition, word error rate, RNN hardware accel-
erator

1 INTRODUCTION
Recently, recurrent neural networks have produced very high per-
formance across a variety of natural language processing (NLP)
tasks. RNNs are now the state-of-art solution for speech recog-
nition and have achieved remarkably low word error rates [7].
Moreover, advances in neural machine translation have narrowed
the performance gap versus human translators [16]. The sequence-
to-sequence (seq2seq) deep learning architecture [6], shown in
Figure 1, has been the engine behind a lot of this progress in both
speech recognition and machine translation. The encoder or listener
receives the audio spectrograms or the text embeddings as input.
And the decoder or speller outputs the translated text or audio
captions. The outputs of the encoder and the inputs to the decoder
are fed to a multilayer perceptron (MLP) feed-forward network in
order to provide longer context between words. This is known as
the attention mechanism [4] wherein a weighted combination of
all the encoder outputs is computed into a context vector which
gets consumed by the decoder. As this sequence-to-sequence model
does not assume conditional independence between predictions,
the attention mechanism helps the network learn an implicit lan-
guage model from the training corpus and can therefore optimize
the word error rate (WER) more directly than other acoustic mod-
els relying on an external language model for decent performance.

Figure 1: Sequence-to-sequence model for translation or speech
recognition

However, it is worth pointing out that an external language model
can still be plugged into this attention-based network for increased
predictive accuracy [5].

A high performance attention-based seq2seq speech recogni-
tion model can easily surpass 30M parameters, consuming 120MB
of memory in native 32-bit precision, which is well beyond the
memory storage envelope of a typical system-on-chip. To alleviate
this challenge, techniques such as sparse execution [10] and low
bitwidth quantization [15] have been proposed in order to compress
the neural network without hurting performance. In this work, we
are particularly interested in quantizing the parameters of seq2seq
speech recognition models in low posit bit precision. The posit
data type, belonging to a larger category of numerics called unums,
can offer compelling advantages in dynamic range and accuracy
over IEEE standard 754 floating-point type [9]. We are especially
motivated in the observation that the decimal accuracy of the posit
number system is greater compared to floats in the dynamic range
of values commonly seen in trained neural network parameters.
Therefore, the main goal of this work is to study the efficacy of the
posit number system for speech-to-text inference. In doing so, this
report makes the following contributions:

• Develop a Python-based framework for converting in all
directions between float, fixed-point and posit numbers.

• Compare and evaluate the efficacy of the posit type as well
as many common numerical data types in neural speech
recognition inference.

• Demonstrate that the hardware cost of a posit-based hard-
ware can be smaller in terms of area and power compared
to a fixed-point or standard floating-point based hardware.

• Unveil a hardware prototype design of a processing engine
for speech-to-text inference.



CS247r, Fall’18, Harvard University Zishen Wan, Eric Mibuari, En-Yu Yang, Thierry Tambe

2 OVERVIEW OF COMMON NUMERICAL
DATA TYPES

In this work, we considered a number of common and popular
numerical data types for speech-to-text inference besides posit,
mainly: IEEE754 32-bit and 16-bit floating point, 16-bit bfloat, 16-bit
and 8-bit fixed-point as depicted in Figure 2.

Figure 2: Common numerical data types used in Today’s computers
and ASICs

In particular, the bfloat16 number format preserves the dynamic
range of 32-bit float by retaining eight exponent bits but incurs
reduced precision with 7 fractional bits. Bfloat16 has garnered
popularity as of late and is currently utilized in 2nd generation
Google cloud TPUs as well as in Intel AI processors and FPGAs [1].
Moreover, low precision fixed-point arithmetic have become the
standard for performing aggressively-compressed deep learning
inference [8, 12]. In the next section, we detail the anatomy of the
posit number format which will be used and contrasted against the
above-mentioned popular data types for neural speech recognition.

3 THE POSIT NUMBER SYSTEM
Efficient hardware acceleration especially for edge devices requires
multiple approaches to achieve reductions in power and memory
use. Word bit length reduction is one key way of achieving this
objective. One of the most promising innovations, that helps with
word bit length reduction, that has recently received attention and
that we have explored in our project is the use of Posit numerics.
Use of posits promises reductions in data movement costs, reduced
latency and reduced power dissipation. The numbers that are used
in neural networks especially parameters such as weights are es-
pecially suitable for representation in posit format. In our project
we demonstrate the achievements of these objectives with an 8-bit
word length, but in addition, we demonstrate a flexible word-length
implementation, which to the best of our knowledge has not been
done before.

3.1 Introduction to Posits
Posits belong to a larger category of number formats called unums
that were invented by John Gustafson [9]. Posits closely resemble
floating point numbers in format because they also round off the
number to the nearest expressible value if the result of a calculation
is not expressible exactly, but there are two major differences. For
the same number of bits:

• Posit offers more accuracy than floats
• Posit offers a large dynamic range than floats

The better accuracy and more dynamic range are achieved by
better rounding rules, more flexible use of bits available, and fewer

exceptions. In general, in the posit representation, numbers with a
smaller exponents are represented more accurately compared to
numbers with large exponents. This is because the exponent has
approximately Gaussian distribution.

3.2 The Posit Format
The equation below shows how a posit number is represented.

x =


0, if (00...0).
NaR, if(10...0)
(−1)s × 22

es×k × 2e × (1 + f
2f s ), otherwise.

(1)

Where:
s represents the sign. 0 is used for positive numbers and 1 for

negative numbers
es represents the maximum number of bits allocated for the
exponent
f s represents the maximum number of bits allocated for the
fraction
e is the exponent value
f is the fraction value
k is computed using the equation below

k =

{
−m, if r = 0.
m + 1, if r = 1

(2)

Where:m is the length of the regime bits, and r is the bit (either
0 or 1) used in the regime. The regime is the length of identical
bits that immediately follow the sign bit, and are terminated by the
opposite bit, called the regime terminating bit, or the end of the
n-bit value.

The posit format equations above shows two exceptional cases:
(1) To represent the zero, we use a single bit pattern, a continu-

ous string of only zeroes (00 ... 0). There"s no requirement to
distinguish between negative and positive zeros as is done
by floats.

(2) To represent Nans and infinity, the singe bit patter (10 ... 0)
a one followed by a string of zeroes is used. NaR stands for
“Not a Real" and is used to represent exception values and
infinity.

The component 2(2
es ) is called the useed and is used quite fre-

quently in the computations to convert back and for the between
Posit and other formats.

3.3 Example of posit format representation
The example below shows a sample posit bit string (Gustafson,
2017). Assume we are told that the es environment variable is 3.

In this example:



Study of Posit Numeric in Speech Recognition Neural Inference CS247r, Fall’18, Harvard University

• The sign bit is 0, meaning we are representing a positive
number.

• The regime bits are the three 0’s terminated by the opposite
1. Therefore, the value used in the useed exponentiation is
-3.

• The exponent bits are 101, equivalent to 5 which is an
unsigned binary integer

• The fraction bits are 11011101, equivalent to 221, also
an unsigned binary integer. When this fractional part is
converted to a fraction using the useed we get 1 + 221

256

Therefore, the bit string shown above evaluates to:

+256−3 × 25 ×
(
1 +

221
256

)
= 3.55393 × 10−6

3.4 Conversion from real numbers to posit
The posit environment is specified using two numbers: N - the num-
ber of bits in the word, and es - the exponent scale (the maximum
number of bits allocated to the exponent).

If the numbers are any of the exceptions, shown in equation 1,
we return the appropriate exception string.

If not, the conversion algorithm from real to posits depends on
where the absolute value of the number lies on the number line.
There are three main categories of numbers:

(1) Those whose absolute value is greater than useed
(2) Those whose absolute value lies between 1 and useed
(3) Those whose absolute value lie between 0 and 1
The sign bit is simply read from the number and the added

at the beginning of the posit string. Otherwise, the rest of the
conversation only depends on the absolute value of the real number
being converted.

3.4.1 Real number greater than useed. For illustration purposes,
we first show the conversion for numbers in category 1 above. The
algorithm for conversion of reals to posit is as follows:

(1) Compute the useed as 22
es

(2) Get the regime bits
(a) Compute regime length - howmany times useed fits whole

in the real number
(b) Convert regime length (k) to bits as per equation 2

(3) Get the exponent bits
(a) Divide original real number by the useedk to get the ex-

ponent and fraction component
(b) Get the base 2 exponent of this exponent and fraction

component
(c) Convert this exponent to exponent bits
(d) Adding padding if necessary to reach the exponent length

es
(4) Get fraction bits
(a) Divide the exponent and fraction component by the expo-

nent component (2exponent)
(b) Result is the mixed fraction
(c) Subtract one from mixed fraction to obtain fraction com-

ponent

(d) Convert fraction component to binary = fraction bits
(5) Set posit string = sign bit + regime bits + exponent bits +

fraction bits
(6) Return posit string

3.4.2 Real number between 1 and useed. In the second category
where the absolute value of the number lies between 1 and useed,
the conversion algorithm is as follows:

In this case, we’ll not really use the regime part of the bit word.
However, we still need to use at least two bits for the regime, one
to indicate that our regime exponent is zero, and the other to show
the regime termination. That is, the scale factor coming out of the
regime part becomes 1 (exponentiation by zero).

Instead of steps 1 and 2 of the algorithm above, we set the regime
bits to "01". The real number is then used as the exponent and
fraction component that we get in step 3(a) of algorithm 3.4.1 above,
and the rest of the algorithm resembles algorithm 3.4.1.

3.4.3 Real number less than 1. In this case:

(1) Find the combined exponent for the useed and the base 2
exponent

(2) Split up the combined exponent into useed power and base
2 exponent power

(3)(a) Determine useed power
(b) Determine exponent power

(4) Set posit string = sign bit + regime bits + exponent bits +
fraction bits

(5) Return posit string

3.5 Conversion from posit to real numbers
The conversion from posit to real numbers primarily involves pars-
ing the string of posit bits, and picking out the different components
for the sign bit, regime bits, exponent bits and fraction bits and
then multiplying the different factors.

(1) Check if the posit string matches one of the exception cases
i.e. if it’s a string of all zeroes or a one followed by zeroes
which would match the real values zero and infinity respec-
tively.

(2) The es value is an environmental parameter that is read from
the settings

(3) Read the sign of the real number by reading the first bit of
the string

(4) Determine the lengths of the regime by reading the number
of unbroken sequence of similar bits after the sign bit. This
also determines the sign of the regime power (i.e. whether
negative or positive), depending on whether the regime is
a string of zeroes or ones. Hence the regime exponent is
determined

(5) The exponent bits follow the regime bits and the regime
terminating bit. The length of the exponent bits is es, so it’s
easy to know where the exponent sequence ends.

(6) Determine the exponent value using good-old binary to in-
teger conversion of the exponent bits sequence

(7) The remaining bits represent the fractional part. These are
then converted to their real value by using a binary to deci-
mal conversion for a fractional value.



CS247r, Fall’18, Harvard University Zishen Wan, Eric Mibuari, En-Yu Yang, Thierry Tambe

(8) The final real number is determined by multiplying the vari-
ous scale factors as determined from the regime component,
the exponent component and the fractional part.

3.6 Posit with flexible bit numbers
The most efficient state of the art posit libraries (such as SoftPosit
from Berkeley) have implemented posit for a limited set of com-
mon bit lengths: 8, 16 and 32. One of the major contributions of
our work is the implementation of posit for word lengths of any
size. In our implementation the length of the word is supplied as
an environment parameter, just like the es value is supplied by
previous implementations. This added flexibility means that our
implementations can be deployed in uses cases where the word
lengths are not known a-priori.

4 RESULTS
Using the OpenNMT toolkit [11], we trained two attention-based
seq2seq models for speech recognition on the open-source Lib-
riSpeech corpus [14]. The structural architecture of these two mod-
els generally follows DeepSpeech3 specifications [5]. But we sub-
stituted batch normalization for layer normalization [3] because
we found that it worked best in this application.

The first model, which uses MLP attention [13], contains 4 layers
of bidirectional GRU with 1024 hidden units and 2 downsampling
pooling layers in the encoder and a 1-layer forward-only decoder
with 512 hidden units. This network, referred as Model 1, has about
20M parameters and was trained to a WER of 18.80 in native 32-bit
floating-point type.

The second model employs general attention [13] and contains
5 layers of uni-directional LSTM with 800 hidden units and 4 down-
sampling pooling layers in the encoder and a 2-layer forward-only
decoder with 512 hidden units. This network, referred as Model 2,
has about 30M parameters and was trained to a WER of 26.28 in
32-bit floating-point precision.

Table 1 summarizes the efficacy of quantizing the model’s param-
eters into various numerical types and bidwidth precisions on both
seq2seq models. Note that the networks were not retrained after
quantization was applied. Two main observations can be drawn
from these results.

The first observation is that 8-bit posit is the best numerical
solution for aggressive quantization at 8-bit precision. Model 1
incurs only a 0.3 percentage point loss in the WER accuracy and
Model 2 shows no degradation when 8-bit posit is used as data type.
Whereas, 8-bit fixed-point precision yields a muchmore appreciable
accuracy loss in both models.

The second observation is that all 16-bit numerics (FP16, BF16,
16-bit posit, 16-bit fixed-point) have similar performance on both
models and match the performance of the native IEEE754 FP32.
This is to be expected given that the distribution of the weights
is [-2.5, 2.5] for Model 1 and [-2, 2] for Model 2. Therefore, the in-
creased fractional precision of these 16-bit numerics is big enough
to preserve the performance of the native FP32 data type. Inter-
estingly, the 8-bit fixed-point<2,6> type in Model 1 shows higher
accuracy than the 8-bit fixed-point<3,5> type even though, in the
former type, there is not enough integer bit width to represent
numbers larger than 2. This suggests that there is a denser weight

distribution in the [-2, 2] range while the distribution is sparser
beyond -/+2.

Table 1: Impact of quantizing themodel’s parameters into Posit and
other popular data types on speech recognition performance during
inference

Data type and Bitwidth WER of Model 1 WER of Model 2

Native (IEEE754 FP32) 18.80 26.28
8-bit fixed-point<2,6> 22.33 27.25
8-bit fixed-point<3,5> 37.05 -

8-bit posit<8,0> 19.10 26.28
IEEE754 FP16 18.80 26.29

Bfloat16 18.97 26.36
16-bit fixed-point<2,14> 18.80 26.27
16-bit fixed-point<3,13> 18.78 -
16-bit posit<16,1> 18.80 26.28

Finally, the small WER deterioration when using 8-bit posit quan-
tization in Model 1 was recovered after just 1 epoch of supervised
training and posit re-quantization. The WER of the 8-bit posit quan-
tized model improved from 19.10 to 18.84 after re-training.

5 AREA AND POWER COSTS OF POSIT IN
HARDWARE

Figure 3 shows the concept of posit-based SoC. The weights and
dynamic activations of the DNN model are stored in the main
on-chip memory in posit format. The accelerator performs RNN
computations in posit-based arithmetics. Therefore, we need a posit-
based adder, multiplier and accumulator for use in the processing
engine of the accelerator.

Figure 3: Framework of posit-based SoC

We achieve the transformation between posit number, floating-
point number and fixed-point number, as well as MAC posit opera-
tions using C++, which can be combined with LSTM engine to form
a posit-based accelerator. For the accuracy measurement method,
considering the relative error formula is quite different for numbers



Study of Posit Numeric in Speech Recognition Neural Inference CS247r, Fall’18, Harvard University

and their converses, we adopt decimal error:

decimal error = | log10(
xcomputed

xexact
)|

The decimal error can be used to define decimal accuracy. Accu-
racy is the inverse of error.

decimal accuracy = − log10 | log10(
xcomputed

xexact
)|

For 8, 16 and 32 bit size, we find the posit method of expressing
the power-of-two scaling frees up more bits for the fraction over
a wide range, giving a greater maximum accuracy for different es
value, showing in Table 2

Table 2: Accuracy Compared with posit and float

Size, Float Max Posit Max Range where accuracy:
bit Accuracy, bits Accuracy, bits posit ≥ float

8 5 6 1/4 to 4
16 11 13 1/64 to 64
32 24 28 1. × 10−6 to 1. × 106

We then measure the area and power cost of posit in hardware,
including float-to-posit converter, posit-to-float converter, posit
adder and posit multiplier, then we compare the cost with float-
point and fixed-point hardware. The logic components of the these
systems are synthesizedwith Synopsis Design Compiler and laid out
with Cadence Encounter with 90nm library. The circuit is clocked
at 100MHz. Power and area measurement are reported in Table 3
and Table 4.

Table 3: Cost of float-to-posit and posit-to-float converter

Type Power(nW ) Area(µm2)

32-bit Float to 8-bit Posit 19841.83 774.49
8 bit Posit to 32-bit Float 19211.70 695.01

Table 4: Cost of posit, fixed-point, float-point adder and posit mul-
tiplier

Type Power(nW ) Area(µm2)

8-bit Posit Adder 7847.93 274.32
8 bit Posit Multiplier 298139.76 5090.91

8-bit Fixed-point Adder 8465.93 336.58
32-bit Float-point Adder 27753.62 1153.33

Table 3 shows the power and area of 32-bit Float to 8-bit Posit
converter and 8-bit Posit t 32-bit Posit converter. Table 4 shows the
power and area of different computational blocks. The cost of 8-bit
posit adder is approximately 25% of 32-bit float-point adder. Most
interestingly, we notice that the cost of the posit adder is slightly
smaller than the fixed-point adder which demonstrates the benefits
of posit and its broad application prospects.

6 PROTOTYPE LSTM ENGINE
We design a prototype of accelerator engine that is highly cus-
tomized for LSTM computation. The equations below summarize
the computations that are done for a single LSTM step. Recall that
an LSTM layer consists of several time steps using the same weight
matrices to process an input sequence. In the equations, there are
three input vectors: xt the input data at time t ,ht−1 previous hidden
state, and ct−1 the previous cell state.

it = σ
(
Wiixt +Whiht−1

)
(3)

ft = σ
(
Wi f xt +Whf ht−1

)
(4)

дt = tanh
(
Wiдxt +Whдht−1

)
(5)

ot = σ
(
Wioxt +Whoht−1

)
(6)

ct = σ
(
ft ∗ ct−1 + it ∗ дt

)
(7)

ht = tanh(ct ) ∗ ot (8)

We can interpret the equations as follows:

(1) The first four equations are similar to the fully-connected
layers of a deep neural network such that we do two matrix-
vector multiplications for each equation and add the outputs
together to get pre-activation values.

(2) Activation function tanh or σ (σ refers to sigmoid) is per-
formed on the the sum of each pair of matrix-vector multi-
plications.

(3) The fifth line calculates the cell state output ct from ft , it ,
дt and previous cell state ct−1.

(4) The sixth line calculates the hidden state output ht from ct
and ot , which is used for the input of the next layer as well
as the previous hidden state for next time step

Figure 4 is the architectural diagram of our prototype LSTM
engine. Note that the attention-based model we use has input vector
size of 800, which means it requires 5M Bytes cache memory to
store all weight parameters if 8-bit fix-point datatype is used. As a
result, only one output entry of ct and ht is computed at the same
time such that only a single row of a each weight matrix is required
to store inside the LSTM engine. The datapath of LSTM engine can
mainly be divided into two parts:

(1) After xt and ht−1 and a single row of each weight matrix is
stored into cache buffers, we use 8 MACs to do matrix-vector
multiplication and accumulate the pre-activations of ft , it ,
дt , ot (only one entry) by 4 accumulators.

(2) Compute activation unit first compute four activation values
and then use them to generate one entry of ct and ht



CS247r, Fall’18, Harvard University Zishen Wan, Eric Mibuari, En-Yu Yang, Thierry Tambe

Figure 4: LSTM Accelerator Engine

The activation functions, tanh and σ , are implemented in the
Algorithmic C Math Library [2] using piece-wise linear approxi-
mations. Figure 5 shows that the line segments in the red curve is
very close to the reference curve.

Figure 5: Sigmoid PWL Output vs. Accurate Sigmoid Output [2]

The proposed LSTM engine is simulated with random values to
verify its functionality. Moreover, we have successfully synthesized
it from SystemC code to RTL in Verilogwith accuracy cycle behavior.
We think the main bottleneck to design the whole LSTM accelerator
is the efficient storage of weight matrices and a dataflow that takes
advantage of weight reuse across timesteps.

7 CONCLUSION
In this project, we have shown that the posit number system is well
suited for speech recognition inference at 8-bit precision. Moreover,
posit-based hardware would be less expensive in terms of power
and area compared to float or fixed-point. Therefore, posits present
themselves as a very appealing solution for deploying compressed
DNNs on the edge and warrant further study.

REFERENCES
[1] Intel unveils new roadmap. https://www.extremetech.com/computing/275102-

intel-unveils-new-roadmap-new-14nm-chips-in-2019-10nm-ice-lake-in-2020,
2018.

[2] Algorithmic C Math Library. https://github.com/hlslibs/ac_math. Accessed:
2018-12-11.

[3] J. Ba, R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

[5] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu, S. Satheesh,
D. Seetapun, A. Sriram, and Z. Zhu. Exploring neural transducers for end-to-end
speech recognition. CoRR, abs/1707.07413, 2017.

[6] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend and spell. CoRR,
abs/1508.01211, 2015.

[7] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan,
R. J. Weiss, K. Rao, K. Gonina, N. Jaitly, B. Li, J. Chorowski, and M. Bacchiani.
State-of-the-art speech recognition with sequence-to-sequence models. CoRR,
abs/1712.01769, 2017.

[8] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with
limited numerical precision. CoRR, abs/1502.02551, 2015.

[9] Gustafson and Yonemoto. Beating floating point at its own game: Posit arithmetic.
Supercomput. Front. Innov.: Int. J., 4(2):71–86, June 2017.

[10] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neu-
ral network with pruning, trained quantization and huffman coding. CoRR,
abs/1510.00149, 2015.

[11] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source
toolkit for neural machine translation. CoRR, abs/1701.02810, 2017.

[12] D. D. Lin, S. S. Talathi, and V. S. Annapureddy. Fixed point quantization of deep
convolutional networks. CoRR, abs/1511.06393, 2015.

[13] M. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. CoRR, abs/1508.04025, 2015.

[14] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, April 2015.

[15] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernandez-
Lobato, G.-Y.Wei, and D. Brooks. Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators. In ISCA, 2016.

[16] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean. Google’s neural machine translation system: Bridging the gap between
human and machine translation. CoRR, abs/1609.08144, 2016.


